
Assignment 0 – Interpolation and Error
Measures

Image Processing and Pattern Recognition

Deadline: October 25th, 2024

1 Goal

In this exercise you should become familiar with popular error measures for images. You
should implement the peak signal to noise ratio (PSNR) and structural similarity (SSIM)
index and use them to compare different interpolation strategies.

2 Error Measures

In order to quantify the quality of digital images with respect to some reference, we
use error measures. An error measure assigns a scalar value that quantifies agreement
between some ground truth solution and some degraded (or restored) image. In this
assignment we only consider discrete images X,Y ∈ RM×N .

2.1 Mean Squared Error

The mean squared error (MSE) is well known in most fields that relate to signal processing.
Specifically for images X,Y ∈ RM×N it is the mean of the pixel-wise squared differences:

MSE(X,Y ) :=
1

MN
‖X − Y ‖2F =

1

MN

M∑
i=1

N∑
j=1

(Xi,j − Yi,j)2. (1)

2.2 Peak Signal to Noise Ratio

The PSNR relates the energy of the highest possible signal value m to the energy of the
noise (or error). Specifically, the PSNR “normalizes” the MSE by the maximal intensity
and scales the result logarithmically:

PSNR(X,Y ) := 10 log10

(
m2

MSE(X,Y )

)
. (2)

In contrast to the MSE, the PSNR increases as X approaches Y and at X = Y we define
PSNR(X,Y ) =∞.
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Note that, in image processing, the energy of the highest possible signal value is the
“white image”, and m depends on which digital representation is used. Typically, if the
images are represented using floating point numbers, m = 1. On the other hand, if an
integral data type is used, m = 255.

2.3 Structural Similarity Index

It is well known that images Y on the hypersphere {Y : ‖X − Y ‖2F = r} can have
drastically different appearances to the human eye. In Fig. 1 we show images with
different corruptions which have the same MSE. In the first two examples (shifted mean
intensity and contrast stretching respectively), the MSE overestimates the “visual” error,
whereas for the jpeg compressed image the MSE possibly underestimates the “visual”
error.

The SSIM tries to combat this issue by defining error measures on three components:
luminance, contrast, and structure. To ease notation, let x, y ∈ Rn be two flattened

(a) Reference (b) 0.22, 0.99 (c) 0.22, 0.92

(d) 0.22, 0.87 (e) 0.22, 0.83 (f) 0.22, 0.81

Figure 1: Images with the same MSE (m = 1, MSE scaled by 100) appear very different
to the human eye, while the SSIM represent the human visual system more
accurately.
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image patches. The luminance of a patch x is the mean intensity

µx =
1

n

n∑
i=1

xi (3)

and we define the luminance comparison function l as

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
, (4)

where C1 = (K1m)2 with the constant K1 � 1, which we fix as K1 = 0.01. To estimate
the contrast of the patches, we compute the sample standard deviation in the patch as

σx =

√√√√ 1

n− 1

n∑
i=1

(xi − µx)2. (5)

To compare two patches x, y, we define the contrast comparison function

c(x, y) =
2σxσy + C2

σ2x + σ2y + C2
, (6)

where again C2 = (K2m)2 and we set K2 = 0.03. To quantify structural similarity, we
consider the normalized cross correlation between x and y. Specifically, the structure
comparison is

s(x, y) =
σxy + C3

σxσy + C3
(7)

where C3 = C2
2 and

σxy =
1

n− 1

n∑
i=1

(xi − µx)(yi − µy). (8)

Finally, we define SSIM = l · c · s such that

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
. (9)

To use the SSIM for image quality assessment, typically it is desirable to apply it on
local windows rather than globally, since image features (luminance, contrast, structure)
can change drastically over an image. To combine the local quality assessments into a
scalar value, we simply compute the mean over all local windows. We denote this as the
mean SSIM

MSSIM(X,Y ) =
1

MN

M∑
i=1

N∑
j=1

SSIM(wr,(i,j)(X), wr,(i,j)(Y )), (10)
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where wr,(i,j) extracts windows of radius r at pixel location (i, j). To avoid blocking
artifacts, we use a Gaussian weighting kernel g = {g1, . . . , gn} such that the estimates
are modified according to

µx =
n∑

i=1

gixi, σx =

√√√√ñ
n∑

i=1

gi(xi − µx)2, σxy = ñ
n∑

i=1

gi(xi − µx)(yi − µy), (11)

where ñ = n
n−1 . The specific parameters of the Gaussian weighting are given in the

assignment sheet.

3 Tasks

You are provided with the skeleton file interpolation error.py in which you find the
parts you should implement. In the file we are trying to find

PSNR(X, ↑k(↓k(X))) and MSSIM(X, ↑k(↓k(X)))

where ↑k and ↓k are two-fold up- and downsampling operators using interpolation degree
k. Specifically, you should implement (2) both in “vectorized” form and looping over
all pixel values in the image (left and right hand side of (1)). Further, you should
implement (9).

3.1 Report

In your report, compare the results of the different interpolation schemes qualitatively
(i.e. show the resulting images) and quantitatively by means of the PSNR and SSIM.
Which interpolation scheme does best? Which one of the two quantitative error measures
do you think is superior?

3.2 Notes

1. Do not change the import statements.

2. Notice that σx as well as σy in (9) is only ever used after it was squared. This insight
can ease the computations heavily (compare to identity Var[x] = E[(x− E[x])2] =
E[x2]− E[x]2). This is also seen in the notebook of the first tutorial session. Very
similar tricks can be applied to calculate σxy.

3. In the file reference output.txt you can find the numbers of the reference
implementation, i.e. it was generated by
$ python interpolation error.py > reference output.txt.

4. Please work with float64 images X ∈ [0, 1]M×N (m = 1). The skeleton file already
loads the input image appropriately.
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Acronyms

MSE mean squared error 1, 2

PSNR peak signal to noise ratio 1, 4

SSIM structural similarity 1–4
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